

Polarean Imaging plc "POLX"

Breathtaking Images...

Investors Symposium June 12, 2019

Agenda

- Welcome Richard Morgan, Chairman
- Company Highlights and Update Richard Hullihen, CEO
- Update on ¹²⁹Xe MRI Technology and Applications Bastiaan Driehuys, PhD CTO
- ¹²⁹Xe MRI to Differentiate Diverse Cardiopulmonary Diseases Prof Sudarshan Rajagopal MD PhD Duke University
- Cystic Fibrosis Prof Jason Woods PhD Cincinnati Children's Hospital
- Closing, Q&A

Polarean Highlights

- Revenue generating company, better than plan performance
- Phase III Clinical trial, 2 pathways, 83% and 56% complete
- Market opportunity
 - >\$US500M equipment sales to top tier US institutions, plus drug sales
 - Potential for multiple pharma and device (valve/stent) company partnering deals in specific therapeutic areas
 - New applications are additive: + cardiology/Pulmonary vascular disease
 - New geographic opportunities with strategic partners emerging
- Continued buildout of IP with key patents on gas exchange and PVD
- EIS/VCT qualified

Significant Interest from Researchers and Drug Companies

- From Clinicaltrials.gov
- Polarean ¹²⁹Xe currently being investigated in 42 clinical trials in the US, most with the Consortium and or affiliates
- Polarean ¹²⁹Xe currently being investigated in clinical trials with >10 drugs in IPF, PAH, Asthma, and COPD
- In process investigating corporate partnering opportunities
- Significant opportunities to reduce Pharma Phase I& Phase II trial costs
- Potential development as true biomarker
- Potential development as 'companion diagnostic'

Operations

- Delivered latest research system: Univ Missouri. Total shipped/installed 24
- Built and delivered Clinical Trial Systems, per GMP
- Built and shipped 5 systems and 1 upgrade in 2018
- Received latest orders from UBC and SickKids, will deliver this year
- Pipeline up year on year
- Third year award of \$US3M 3yr SBIR grant in hand

Polarean's FDA Strategy

- Obtain a broad claim that allows our technology to be used in all diseases for clinical diagnosis and monitoring therapy
- We are pursuing a FDA "structural claim" for use of our product as a contrast agent
 - Identifying "structural abnormalities common to one or more disease states"
- We receive the same "claim" as approved 133Xe reference standard
 - "for the evaluation of pulmonary function, for imaging the lungs"

Phase III Trials - Structure, Timing

56% complete

83% complete

- Required number of patients
 - Lung Resection 32 subjects
 - Lung Transplant 48 subjects
- Deep in Trials
 - Two experienced medical centers in trial
 - University of Virginia (largest customer)
 - Duke University (home base)
 - Adding third site June 2019: Cincinnati to speed resection pathway
 - Estimated completion of enrolment: 3Q2019
 - Estimated commercial launch: 2H2020

An Update on ¹²⁹Xe MRI Technology and Applications

Bastiaan Driehuys, Ph.D Chief Technology Officer

Informed by a Rich Academic Research Environment

Mu

Не

Ziyi

Joe Mam-

marapallil

Leith Rankine

Craig Racklev

Rob Tighe

Kelsev

John

Nouls

Alex

Church

Christopher Tonv Huang

Loretta Que

David

Mummy

Brian

Soher

Kamran Mahmood

Sudarshan Rajagopal

Rohan

Virgincar

Funding Sources: NHLBI R01-HL-105643 NHLBI R01-HL-126771 HHSN268201700001C **Gilead Sciences** Genentech **CSL-Behring United Therapeutics** AstraZeneca UL1 RR024128

Page

McAdams

Samantha Womack

Lake

Morrison

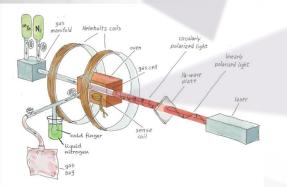
Korzekwinski Shiva Das

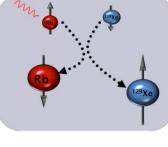
Larry Marks

Lukas Ebner

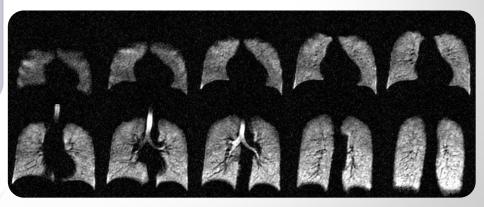
Hyperpolarized ¹²⁹Xe MRI Refresher

¹²⁹Xe Blend




Dispense

Hold/Measure



Administer

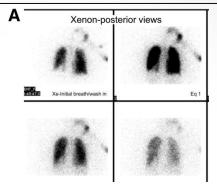
8 s breath-hold scan

POLAREAN

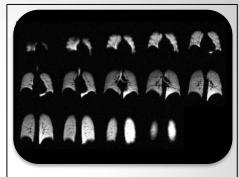
- ¹²⁹Xe Signal increased by ≈100,000
- Persists for ~2 hours in dose vessel

Why We Need New Diagnostic Techniques for the Lung

Pulmonary Function Tests Computed tomography



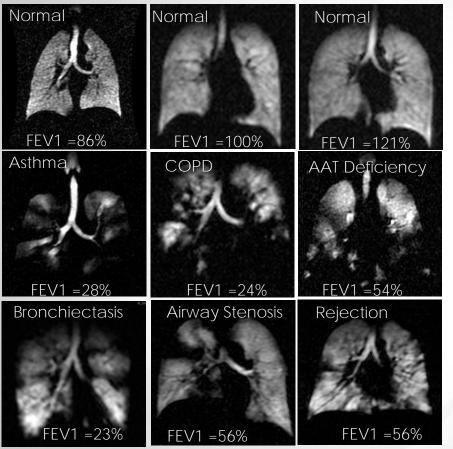
- Airflow, lung volumes, gas exchange
- Effort-dependent
 - Varies by 5-10%
- Not spatially resolved
- Insensitive to early disease, progression and therapy response
- (Invented in 1846)



- Structural detail
- No function
- Insensitive to disease progression
- Ionizing radiation

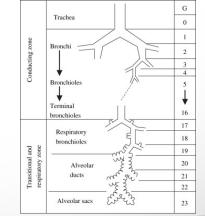
Nuclear Scintigraphy

- Approved for ventilation
- 2D, low-resolution
- Only gross abnormalities
- Ionizing radiation
- Supply challenges

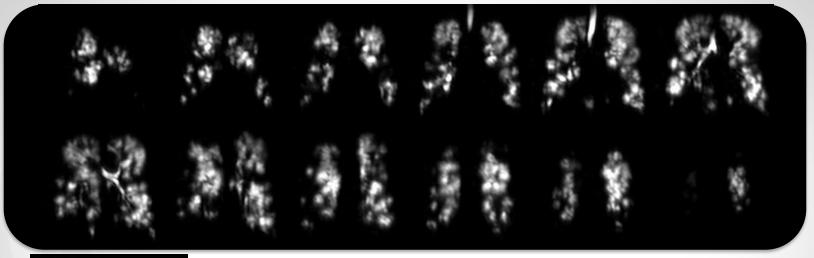


¹²⁹Xe MRI

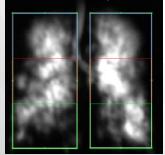
- 3D, high-resolution
- Fast, safe, repeatable
- Detects early disease
- Detect response
- In Phase III Trials



¹²⁹Xe Ventilation MRI – Sensitive, Regional and in Context


What Clinicians Want:

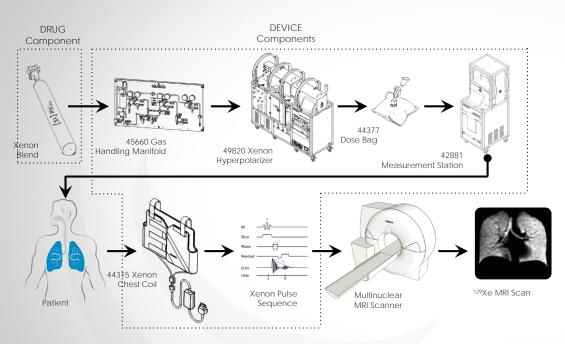
- Thoracic cavity context
- Not effort dependent
 - Repeatable
- 3D resolution
 - Track disease regionally
- All 23 airway generations...



Non-inferiority Study for ¹²⁹Xe MRI vs ¹³³Xe Scintigraphy

¹²⁹Xe MRI Projection

	Right Lung %	Left Lung %	
Upper Zone	13.3	tipper Zo	ne
Middle Zone	24.2	22 Miðdle z	one
Lower Zone	11.2	15ter zo	ne
Total Lung	47.0	53.0	

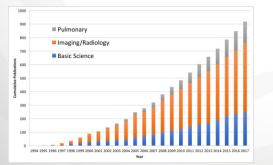

¹³³Xe Scintigraphy

7
8
8

	Right Lung %	Left Lung %
2 Jpper Zone	12.7	15.2
viiddle Zone	21.8	24.6
ower Zone	10.8	15.0
otal Lung	45.2	54.8

What FDA Drug/Device Approval Achieves

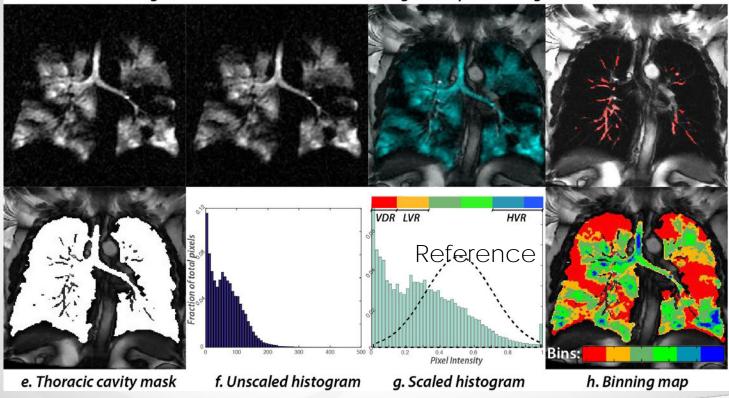
- Establishes safety/efficacy of:
 - ¹²⁹Xe gas blend (drug product)
 - Polarizer
 - Drug container
 - Measurement station
 - Transmit/Receive Coil
 - Pulse sequences
- Approves 3D ¹²⁹Xe Ventilation MRI
- Physicians order ¹²⁹Xe MRI
- Hospitals charge for ¹²⁹Xe MRI
- Pharma can use the technology
- Accelerates new indications


Seeding the Market with Research

POLAREAN

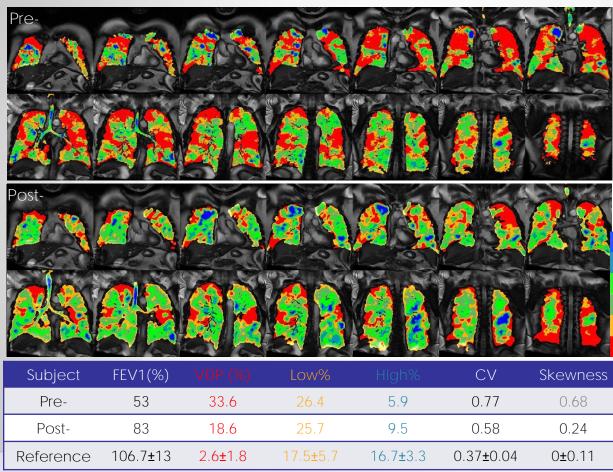
Clinical ¹²⁹Xe MRI Research Activity

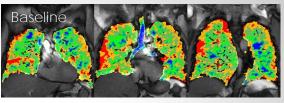
			U.S. National Ethray of Medicine ClinicalTrials.gov	Find Studies About Studie	rs • Submit Studies • Resources • About Site •	
			Home > Seved Studies		Saved Studies (42)	
				Saved Studies		
Diear Sar	ved 51Jd	es List				
howing	g: 1-42	of 42 studies	00 \$)studies per page			
Row	Seved	Status	Study Title	Conditions	Interventions	Locations
1	0	Not yet recruiting	Langhadina (Budy of Jeron-129 MR) Imaging (Percin of Cannabia Simolog	Cannabis Use Cannabis Smoking Marijuana Smoking Marijuana Usage	Diagnostic Test: Hyperpolarized Xienon-129 MRI of the lungs Diagnostic Test: Computed Tomography (CT) Diagnostic Test: Putmonary Function Tests (PFTs) (and 4 more)	Robarts Research Institute: The University of Western Ontal Centre London, Ontario, Canada
2	8	Not yet recruiting	Duplurab on Aiway Hyper-responsiveness and Ventilation Heterogeneity in Patients WIB Asthma.	• Astrna	Biological: Dupitumab/Dupixent Biological: Placebo	 Frestore Institute for Respiratory Health, St. Joseph's Healthermitton, Ontario, Canada
3	8	Recruiting	Exatuating the Effect of Bennalizumab in Sensor, Poorly-controlled Ecologibilic Asthma Using Inheled Hyperpoteitaed 129 Xenon Mitt	Asthma; Eosinophilic	Drug: Bernalizumab Drug: 129 Xenon	 Robarts Research Insitute; The University of Western Ontar Centre London, Ontario, Canada
4		Not yet recruiting	Hyperpolarized Noble Gas MPI Detection of Radiation-Induced Lung Injury	Rediation Induced Lung Injury Non Small Cell Lung Cancer	Diagnostic Test: Hyperpolarized xenon-129 MPI	
6	8	Not yet recruiting	Hp129 Xenon Imaging and BOS in Lung Transplartation	Bronchiolitis Obliterans	Drug: Hp 128Kenon	Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, United States
6	8	Recruiting	Alway Clearance Therapy on Hyperpolarized 120%enon and MRI	Cystic Fibrosis	Drug: hyperpolarized Xeron gas	 Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, United States
7	0	Recruiting	Comparison of 129Xe MRI With 19F MRI in CF Lung Dressee	Cystic Fibrosis	Drug: Hyperpolarized Xenon gas Drug: PFP	 The University of North Carolina, at Chapel Hill Chapel Hill, North Carolina, United States
8	8	Recruiting	MRI of Lung Structure and Function in Preterm Children	Bronchopulmonary Dyspiasia	Diagnostic Test: Lung MRI	The Hospital for Sick Children Toronto, Ontario, Canada
9	0	Recruiting	Exploring the LHHy of httpsychologial 1286s. MH in Healthy Valurteens and Polisiets With Long Deales	Asthma Chronic Obstructive Putmonary Disease Bronchiectasis (and 5 more)	Other: Hyperpolarized 123Xe MRI	 Freatone Institute for Respiratory Health, St. Joseph's Healthermitten, Ontario, Canada
10	8	Recruiting	Hyperpolarized 128% Magnetic Resonance imaging for Evaluation of Radiation-Induced Lung Injury in Subjects Undergoing Thoracic Imadation	Rediation Induced Lung Injury (RIL)	Diagnostic Test: Hyperpolarized gas and proton lung MRI	 The Hospital for Sick Children Toronto, Ontario, Canada
11	0	Recruiting	Hgergotakised Xiron MRI for Assessment of Putnonary Function in Lung Tangeted	Putmonary Surgical Procedures	Drug: 1200e MRI Drug: 1200E sovrágraphy	Doke University Hospital Durham, North Carolina, Linited Bates University of Virginia Citeriothewile, Vegnica, United States
12	0	Recruiting	Haperpolarized Xeron WH for Assessment of Pulmonary Function in Lung Resortion	Pulmonary Surgical Procedures	Drug: 1286e MRB Drug: 133 Xe schrigraphy	Duke University Hospital Durham, North Carolina, United States University of Veginia Chartomewile, Veginia, United States
13	8	Recruiting	Assessing Response to Inhaled Prostaryclin With Hyperpolarized Xe Mill	Pulmonary Vescular Disease	Drug: Hyperpolarized 129Xenon gl Screenshot	 Duke University Medical Center Durham, North Carolina, United States



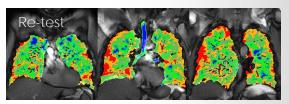
- 42 active/pending clinical studies
- 11 different diseases/conditions
- 5 interventions being tested
- 6 funded by pharma

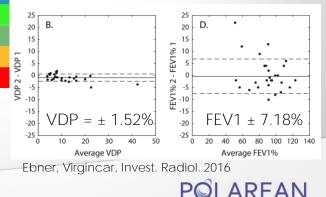
From Qualitative to Quantitative ¹²⁹Xe Ventilation MRI


a. Ventilation image b. Bias-field corrected c. Registered proton image d. Detected vasculature

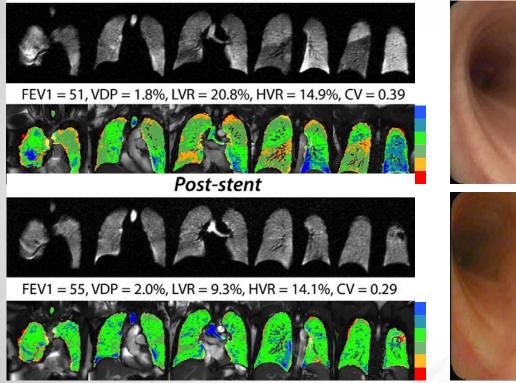


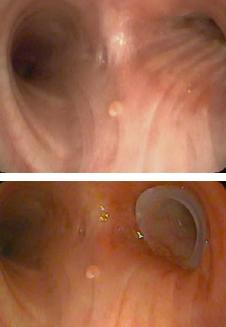
He, M., et al. Acad. Radiol., 2014; He, M., Que, L., Huang, Y.C., et al. Acad. Radiol. 2016


From Qualitative to Quantitative 129Xe Ventilation MRI


Repeat Scan

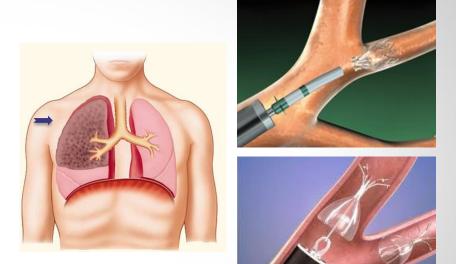
VDP =10.2%, low = 29.5%, high =9.5%, CV = 0.50




VDP = 10.9%, low = 27.2%, high = 9.1%, CV = 0.49

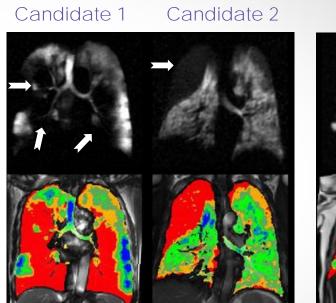
Imaging Guidance for Bronchoscopic Interventions

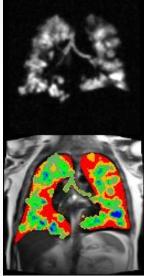
Pre-stent


Kamran Mahmood

Mahmood, Ebner, He, et al. Am. J. Transplant. 2017

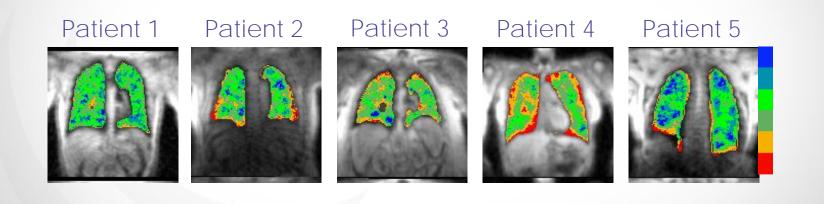
Endobronchial Valves to Treat COPD

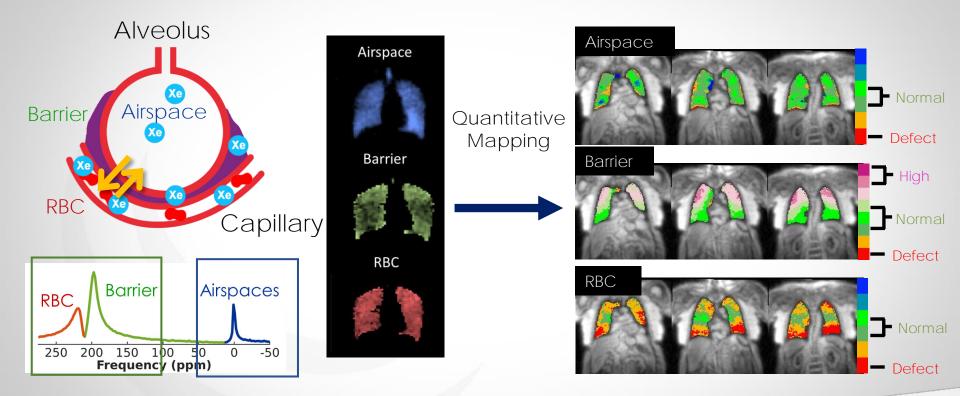

- Potential relief for 3-4 million COPD patients with emphysema
- Pulmonx, Spiration valves FDA approved in 2018
- \$10,000 in disposables cost, operating room time, 3-5 day hospital stay.
- Paid for under major chest DRG



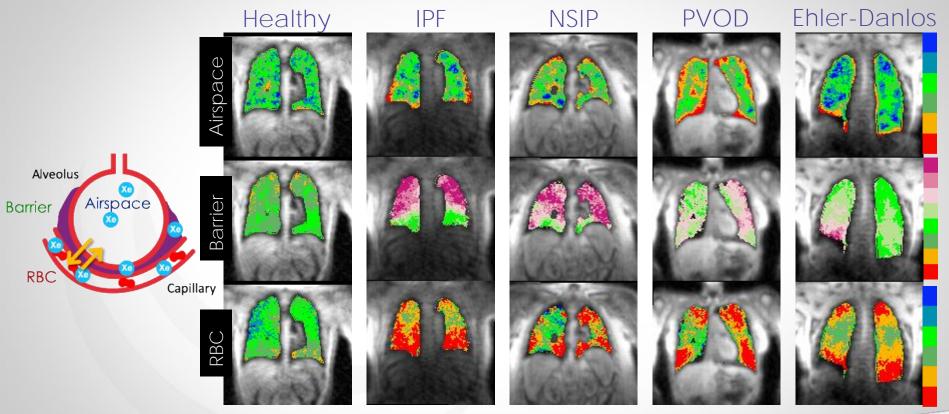
Interventional Pulmonologists want 129Xe MRI

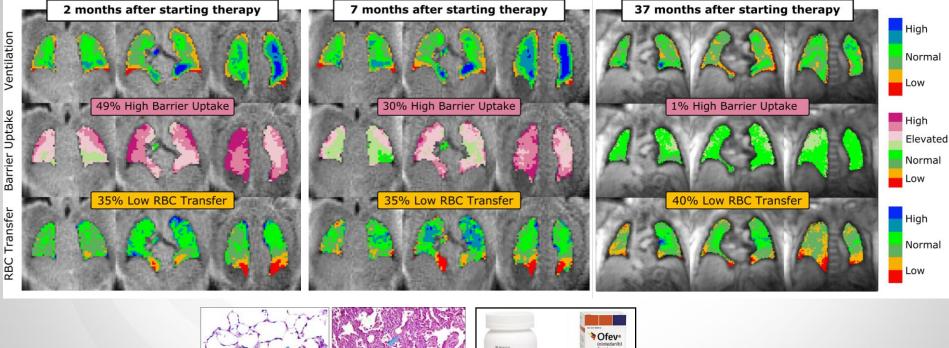
- Currently operating "blind" based on inference from Chest CT
- 3D functional MRI enables
 - Candidate selection
 - Valve placement guidance
 - Follow-up monitoring
- Improves outcomes and reduces costs

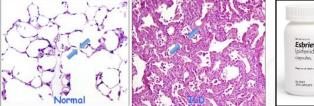

Poor Candidate


Moving Beyond Ventilation...

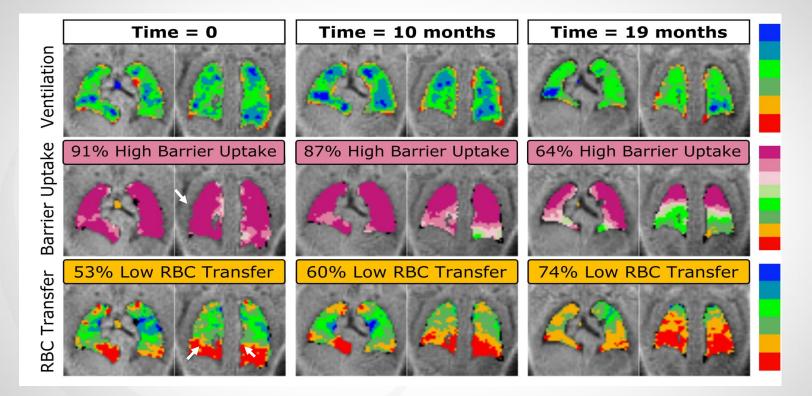
Clinicians increasingly asking us to address unexplained dyspnea (3.4 million visits to ER in US each year)


Imaging All Aspects of Function in One Breath

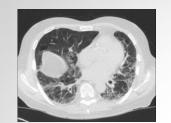

US Patents 8911709, 9625550 through 2032

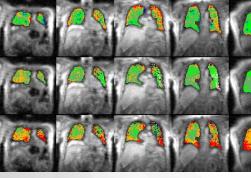

Now We See the Whole Disease Burden

Visualizing Therapy Response in IPF

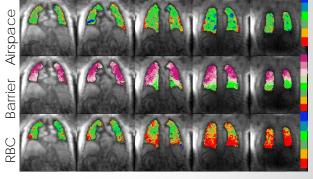


http://pulmonaryfibrosisnews.com/2014/10/23/two-new-ipf-treatments-reportedly-will-cost-94k-96k-year/


Patient Showing Continued Progression


Rankine, An. Amer. Thoracic. Soc. Under review

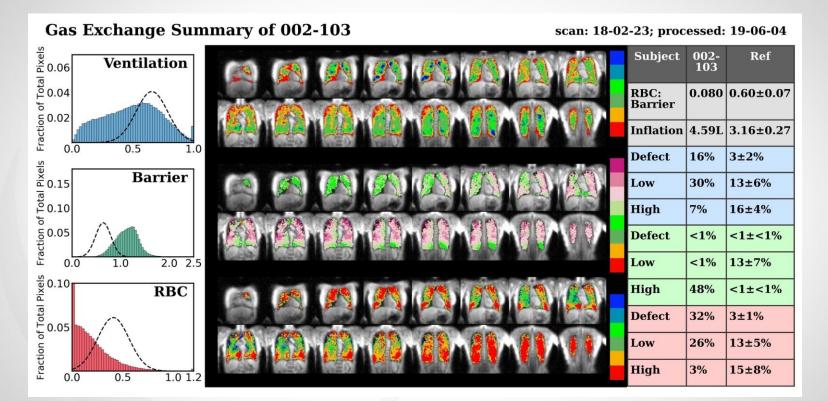
Prognostic and Predictive Information for IPF Care



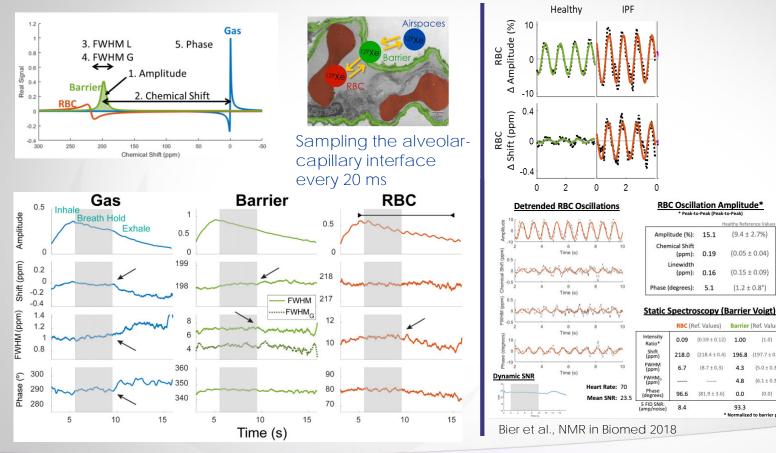
RBC Barrier

Airspace

- barrier Poor RBC High
- Normal barrier, Poor RBC transfer
- Unlikely to benefit from therapy.


- High Barrier, Preserved RBC Transfer
- Likely to benefit from therapy

- High Barrier, Poor RBC Transfer
- May benefit from drug
- Accelerate transplant listing



From Prognosis/Monitoring to Diagnosis ...

POLAREAN

¹²⁹Xe Spectroscopy Adds Hemodynamics and Oxygenation

Peak-to-Peak (Peak-to-Peak

15.1

0.19

5.1

RBC (Ref. Values)

 (0.59 ± 0.12)

 (81.9 ± 3.6)

(ppm):

(ppm): 0.16

Linewidth

0.09

218.0

6.7

96.6

8.4

 $(9.4 \pm 2.7\%)$

 (0.05 ± 0.04)

 (0.15 ± 0.09)

 $(1.2 \pm 0.8^{\circ})$

Barrier (Ref. Values)

(1.0)

 (6.1 ± 0.3)

(0.0)

1.00

196.8 (197.7 ± 0.3)

0.0

93.3

* Normalized to barrier peak

US PTO App 16/406,630, filed 5/8/19

¹²⁹Xe MRI to Differentiate Diverse Cardiopulmonary Diseases

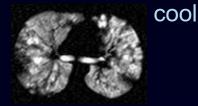
Sudarshan Rajagopal

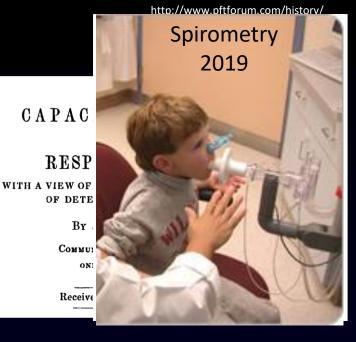
Co-Director, Pulmonary Vascular Disease Center Assistant Professor of Medicine and Biochemistry Duke University Medical Center

¹²⁹Xe Ventilation MRI to advance personalized medicine (CF and beyond)

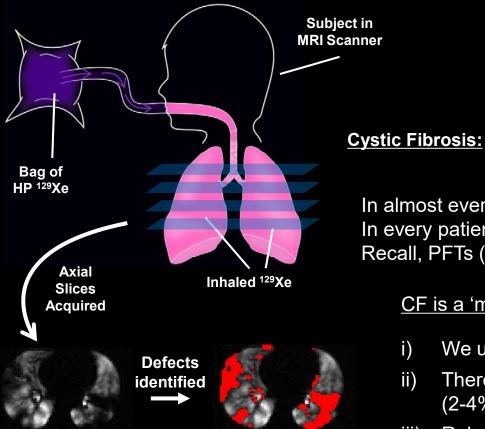
Jason C. Woods, Ph.D. Center for Pulmonary Imaging Research Pulmonary Medicine Radiology Neonatology Physics

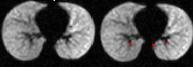
Ranked #2 in US (consistently #1-3 in Pulm) 1000 faculty, \$2.4B/yr revenue





Clinical standard for lung function: Pulmonary Function Testing (PFT) Used for diagnosis or management of ~100% of <u>Spirometry (FEV₁)</u>, Diffusion of CO (D_LCO Global measurements (expressed as %) Notoriously insensitive to early disease (D_LCO even more insensitive than FEV₁) Dated technology


Hyperpolarized ¹²⁹Xe MRI Measure Ventilation


Routine clinical management of lung disease

1. Cool: Ventilation MRI via ¹²⁹Xe

Control, 6 y.o. female FEV₁ = 95%, VDP = 1.8%

11 y.o. male FEV₁ = 102%, VDP = 27.5%

15 y.o. female FEV₁ = 72%, VDP = 32.2%

In almost every CF patient, there are defects In every patient with obstructive lung disease (asthma, COPD, ..) Recall, PFTs (FEV_1) are insensitive to early obstruction

CF is a 'model' obstructive lung disease:

- i) We understand the mechanism of disease
- ii) There is a predictable, steady decline in lung function (2-4%/year—more than COPD)
- iii) Robust response to new treatments

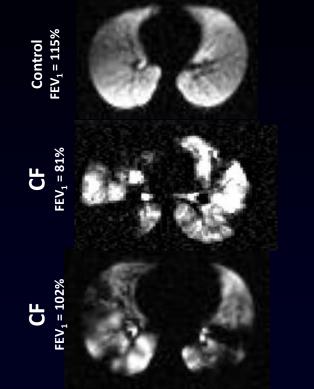
- 1. Thomen et al. J Cyst Fibros. 2016
- 2. Walkup et al. Pediatr Radiol. 2016

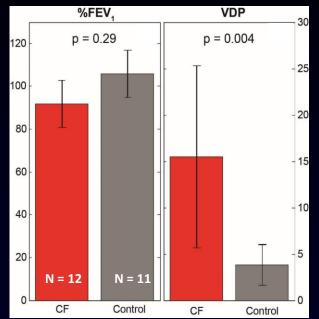
Our initial Pediatric Study

- Image early CF Lung disease to understand sensitivity
- Philips 3T magnet; Polarean 9810 polarizer (9820 shown)
- Measure regional ventilation
 - Measure ventilation defect percentage (VDP, measured as <60% of avg lung signal)
 - Compare to FEV₁
 - Breath = $1/6^{\text{th}}$ predicted total lung capacity, up to 1L
- Monitor safety in pediatrics
 - SpO₂ & heart-rate throughout imaging

Group	Age, years (range)	Sex	Lung Function FEV ₁ % (range)
Cystic Fibrosis	12.5 ± 2.3	3 M/ 9 F	101.3 ± 15.2
(n=12)	(8-16)		(72-120)
Controls	11.5±3.2	7M/4F	100.3±8.5
(N=11)	(6-16)		(89-115)

Safety & tolerability of ¹²⁹Xe MRI in children

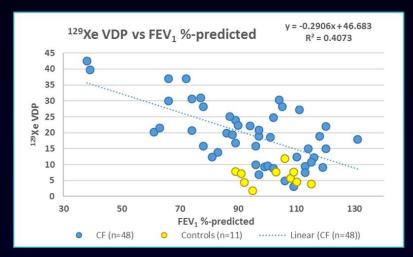

- No subjects withdrew from the study
- All subjects were able to perform the coached breath-hold maneuver (max 16 sec)


Imaging dose:	Baseline	Lowest	2-min post	P-value
	SpO ₂	SpO ₂	SpO ₂	(baseline vs 2-min post)
All subjects (Ref 1) (11 CF & 11 Controls)	98.1 ± 1.4 %	92.6 ± 6.7%	97.5 ± 1.7 %	0.16

- No significant changes in heart-rate throughout the imaging
- Any transient side effects were mild and spontaneously resolved within 30s (Tingling extremities, dizziness, euphoria– paresthetic properties of Xe) No significant difference in the SpO₂ changes between controls and CF subjects
- No serious adverse events
- Results¹ are in agreement with safety assessments of ¹²⁹Xe MRI in adults.^{2,3}
- We routinely perform ¹²⁹Xe MRI in adults & children as young as 5 years old (most of whom can't perform PFTs!) & have imaged over 300 subjects.

Published Results: ¹²⁹Xe Ventilation Defects (VDP) in CF

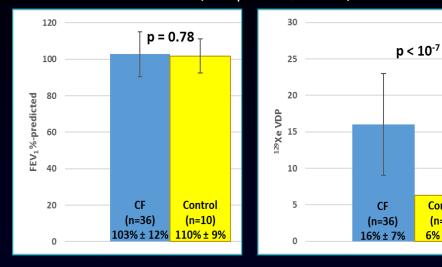
Ages 6-16


¹²⁹Xe ventilation MRI is a sensitive technique for measuring airway obstruction

RL Thomen et al, J Cyst Fibros 2017; 16: 275-282

¹²⁹Xe MRI data, to Dec 2018

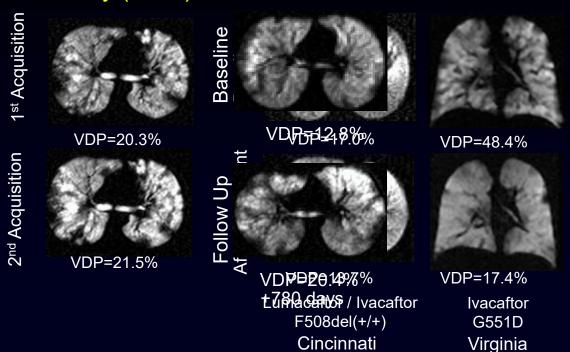
Group	Age @ MRI (range)	FEV ₁ %-predicted (range)	¹²⁹ Xe VDP (range)
CF	14.5 ± 7.9 yrs	93% ± 21%	19.4% ± 9.4%
(n=48)	(6-45 yrs)	(38-131%)	(3.2-42.5%)
Control	11.5 ± 3.2 yrs	100.3% ± 8.5%	6.4% ± 2.8%
(n=11)	(6-16 yrs)	(89-115%)	(1.8-12.0%)



CF patients with clinically preserved lung function (FEV₁ ≥ 80%; N = 36)

Control

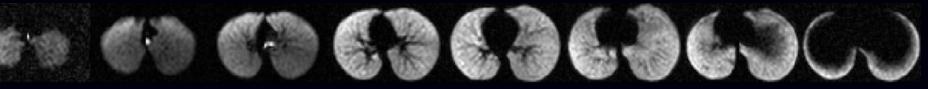
(n=10)


6% ± 3%

 Ventilation deficits easily detected in CF patients with normal spirometry—¹²⁹Xe is sensitive to early airway obstruction

Demonstration in CF (as a model disease)

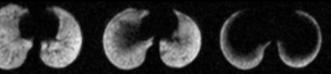
Low same-day Variability (< 2%) Disease Progatisation Response


Images are *very* effective at patient/family communications

Is our routine management working, or should we make changes? Is the new drug working in *my* patient? (Also, testing new pharma)

Take-home message for ¹²⁹Xe MRI: Sensitivity, regionality

14 y.o. male control subject, $FEV_1 = 103\%$ (normal lung function)


¹²⁹Xe VDP = 2%

6 y.o. female control subject, FEV₁ = 98% (normal lung function)

¹²⁹Xe VDP = 3%

14 y.o. CF subject, FEV₁ = 96% (normal lung function)

¹²⁹Xe VDP = 16%

14 y.o. subject at risk for BOS (post-BMT), $FEV_1 = 88\%$ (normal lung function)

 129 Xe VDP = 28%

Opens door to true individualized, precision medicine

Is "Precision Medicine" just a platitude?

No. Pulmonary medicine is entering a treatment renaissance (think cardiology, 20-30 years ago)

<u>CF</u>: *highly effective* CFTR modulators for broad genotypes <u>Asthma</u>: new targeted biologic therapies every few months <u>COPD</u>: EB valves for volume reduction, new drugs on the horizon <u>Rare-lung diseases</u>: sirolimus for LAM, GM-CSF therapy in PAP <u>ILDs/IPF</u>: nintedanib and perfenidone , new treatments coming!

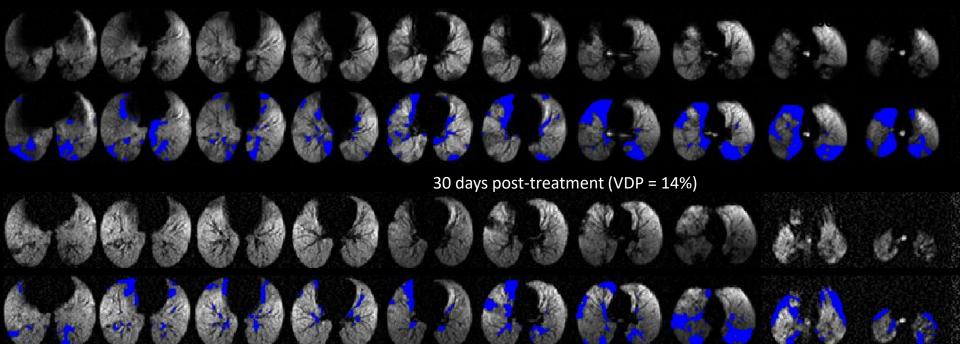
Using ¹²⁹Xe MRI for Precision Respiratory Medicine

N=1 studies

e.g., Does this CFTR modulator work on that CF genotype?

- Regional treatments

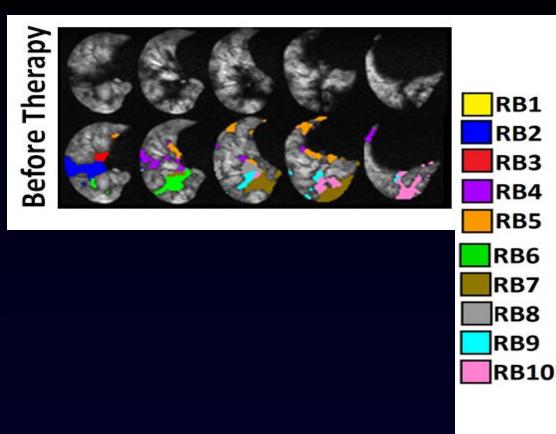
 e.g., image-guided placement of endobronchial valves
- Phenotyped treatment


e.g., new biologic treatment for asthma (e.g. eos atopic)

- Detection of early onset disease e.g., treatment of early BOS post-transplantation
- Randomized trials with fewer patients e.g., Does alpha-1 replacement therapy actually work?

Precision Medicine Example, CF

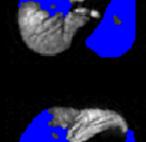
N=1 study: Does off-label drug X correct rare CF mutation?

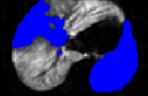

Pre-treatment (VDP = 20%)

MRI results consistent with PFTs, sweat chloride, other tests. Did it correct the CFTR-mutation abnormality? A little....

Precision Medicine Example: regional response to BT

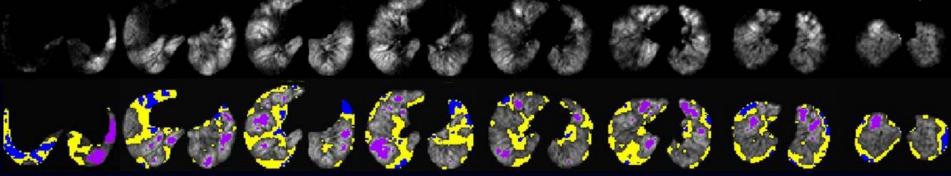
BT = bronchial thermoplasty


> Bronchopulmonar y segment


Thomen *et al., Radiology,* 2015; 573: 1970-8

Precision Medicine Example: post-infectious BO

How much is the left lung participating in ventilation? Obvious applications in lung- and bone-marrow transplantation

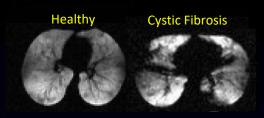


Precision Medicine Example: early BOS

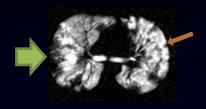
(post bone-marrow transplantation)

Treatment response?

 March \rightarrow May **VDP: 28%** \rightarrow **18%** (\downarrow) Complete defect: 5.4% \rightarrow 3.7% (\downarrow) Partial defect: 22.8% \rightarrow 14.3% (\downarrow) Hyperventilated: 5.3% \rightarrow 1.4% (\downarrow)


LL Walkup, et al., Eur Respir J 2019, in press.

Conclusions


¹²⁹Xe Ventilation MRI

- Very sensitive measure of early lung obstruction
 - More sensitive than any other traditional testing
 - Regional information unavailable by any other test
- Potential for routine clinical management
 - e.g., in CF lung disease
- Evaluate present & future regional treatments:
 - asthma, COPD, CF, post-transplantation, etc.
- Potential for true precision medicine, matching patient to treatment (recall, treatment is easier at early disease)

FEV₁ = 98% FEV₁ = 96%

<u>Cincinnati (not pictured)</u>: JP Clancy MD, Frank McCormack MD, Bruce Trapnell MD, Theresa Guilbert MD, many others <u>Washington University</u>: Mario Castro, MD



2018

Closing

- Revenue generating company, drug device combination company
- Completing non-inferiority Phase III clinical trial, NDA build already underway
- Added new IP for key clinical applications gas exchange and PAH
- Rapid progress path to breakeven post approval
- Combination of Pharma, implantable device, geographic market partner, and MRI manufacturers will fund future expansion

Polarean Imaging plc "POLX"

Breathtaking Images...

Investors Symposium June 12, 2019

